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Although targeted therapy is yielding promising results in the
treatment of specific cancers, drug resistance poses a problem. We
develop a mathematical framework that can be used to study the
principles underlying the emergence and prevention of resistance
in cancers treated with targeted small-molecule drugs. We consider
a stochastic dynamical system based on measurable parameters,
such as the turnover rate of tumor cells and the rate at which
resistant mutants are generated. We find that resistance arises
mainly before the start of treatment and, for cancers with high
turnover rates, combination therapy is less likely to yield an
advantage over single-drug therapy. We apply the mathematical
framework to chronic myeloid leukemia. Early-stage chronic my-
eloid leukemia was the first case to be treated successfully with a
targeted drug, imatinib (Novartis, Basel). This drug specifically
inhibits the BCR-ABL oncogene, which is required for progression.
Although drug resistance prevents successful treatment at later
stages of the disease, our calculations suggest that, within the
model assumptions, a combination of three targeted drugs with
different specificities might overcome the problem of resistance.

multiple-drug therapy � mutations � stochastic models

Drug resistance is a frequent clinical problem for cancer
patients (1). Many mechanisms of drug resistance have been

found (2, 3). For example, drugs can be prevented from entering
the cells; drugs can be pumped out of cells; they can be
enzymatically inactivated; drug activity can be prevented by
mutation or altered expression of the target; and defects in
apoptosis, senescence, and repair mechanisms can contribute to
resistance. A particular problem in cancer is the occurrence of
multidrug resistance. Many anticancer drugs cause direct dam-
age to DNA, which triggers cellular checkpoints (4). In recent
years, however, there has been a transition away from classic
cytotoxic and hormonal agents toward targeted therapy (5). This
involves the correction of precise molecular abnormalities that
underlie the progression of the tumor. An example is the
treatment of chronic myeloid leukemia (CML) with imatinib
(Novartis, Basel) (6). Although such therapies have shown
remarkable clinical success, the emergence of drug resistance
poses problems, especially at more advanced stages of cancer (7,
8). To manage this problem, it is important to gain an under-
standing of the principles that underlie the emergence of drug
resistance. This requires a mathematical framework. In the
context of viral infections such as HIV, mathematical analysis of
the evolution of drug resistance has contributed to devising the
combination therapies that now successfully prevent pathology
over long periods of time (9–11). This paper provides an
up-to-date mathematical framework for the targeted treatment
of cancer, which elucidates the principles according to which
resistant tumor cells evolve. It can be applied to specific cancers
that can be treated with targeted therapy. As an example, we
consider CML and provide guidelines on how many drugs should
be used in combination to avoid treatment failure.

The Conceptual Framework
To understand how resistant mutants are generated during
cancer progression and treatment, we have developed the fol-

lowing conceptual framework. Cancerous cells are described by
a stochastic birth–death process with a positive net proliferation
rate. If we denote the growth rate of cells as L and the death rate
as D, the condition L � D corresponds to a clonal expansion. We
further assume that cancer is detected when the colony reaches
a certain size, N, at which moment therapy starts (we will also
refer to N as ‘‘treatment size’’). The effect of therapy is modeled
by the drug-induced death rate, H, which shifts the balance of
birth and death such that the colony shrinks. That is, the net cell
death rate is now larger than the birth rate, D � H � L. If all
cancerous cells were susceptible to the drug, then therapy would
inevitably lead to eradication of cancer. However, in the course
of cancer progression, mutations can lead to the generation of
cell types that are resistant to the drug. This is assumed to occur
with a probability u upon cell division. Before the tumor is
treated, the mutant will behave identically compared with the
wild type. During therapy, however, the resistant phenotype will
proliferate, whereas the wild type will be killed with a rate H. The
resulting treatment failure can be countered by combining
several drugs, as demonstrated effectively with viral infections
(12). Such combination therapy is included in this framework. In
our first model, we assume a mutation that confers resistance to
one drug does not confer resistance to any of the other drugs in
use. This may not be the case for all drugs�mutations, and these
effects have to be accounted for in further modifications of the
model (see Model Extension and Applicability). With these
assumptions, to become resistant to n drugs, the cell has to
accumulate n mutations. These mutational processes can be
presented as a combinatorial mutation network, an example of
which is presented in Fig. 1. For simplicity, we assume mutant
cells that are not resistant to all drugs in use are killed with the
same rate as wild-type cells. Alternatively, it can be assumed that
such mutants are partially resistant [i.e., are affected less than the
wild-type but more than the fully resistant phenotype (13, 14)],
but it turns out that this complication does not alter our results
significantly (see below). The model is based on mathematical
analysis of stochastic birth and death processes on combinatorial
mutation networks. The approach is described in the supporting
information, which is published on the PNAS web site, to keep
the main text accessible for a biological readership.

We will explore the principles according to which resistant
mutants are generated during the pretreatment growth phase
and during therapy. In particular, we investigate the chances that
resistant mutants preexist before treating a tumor of size N. In
this respect, it is key to examine the number of cell divisions that
occur during the growth phase until size N is reached. This is
roughly given by N � NL�(L�D). We can see that if D � 0 or
D �� L, the number of cell divisions is approximately given by
N � N. On the other hand, if D is close to L (D � L), many more
cell divisions are required to reach size N, because a high death
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rate cancels the effect of cell divisions. For convenience, we will
call the scenario where D � L a high-turnover cancer. In
contrast, we will call the scenario where D � 0 or D �� L a
low-turnover cancer. In the following, we will first examine the
emergence of resistance against a single drug and then expand
the analysis to include the use of more than one drug.

Evolution of Resistance Against a Single Drug
Consider the use of one drug only. We determine the relative
roles of the pretreatment and the treatment phase for the
generation of resistant mutants. In other words, how important
is the preexistence of mutants? We first perform in silico
experiments, where we artificially set the mutation rate to zero
right after treatment starts. That is, mutations can be generated
only before therapy. We calculate the probability of treatment
failure in this setting, which we define as the probability that the
cancer escapes therapy due to generation of resistant mutants.
This is denoted by P1

1; the symbol1 indicates that we look at the
contribution of the growth phase to mutant generation, and
the subscript 1 refers to a one-drug therapy. Next, we set the
mutation rate to zero in the pretreatment phase. Now, mutations
can be generated only during therapy, and we can evaluate the
corresponding contribution to treatment failure, P1

2. It turns
out that for realistic treatment regimes, we have P1

1 � P1
2. That

is, the generation of resistant mutants takes place predominantly
before treatment starts. The treatment phase becomes important
only for the generation of resistance in the unrealistic case where
H � Hc [where Hc � 2(L�D)]. Under this condition, treatment
is very ineffective, such that the number of cell divisions during
treatment is higher than during the growth phase before treat-
ment. In other words, the time it takes to eradicate the tumor by
drugs in the absence of resistance is larger than the age of the
tumor upon start of therapy! This is not a likely scenario.
Therefore, we conclude that for all realistic cases, resistance
develops before the start of treatment.

Combining the growth and treatment phases, we can calculate
the overall probability of treatment failure as a function of
treatment size, N. We have

P1
tot � 1 � � 1 �

Hu
H � D � L�

N

.

Importantly, if H is large relative to D, then

P1
tot � P1

1 � 1 � e�Nu, [1]

and it is independent of the turnover rate. This result means that
in the context of a single drug, high- and low-turnover cancers
behave in exactly the same way, so far as the preexistence of
mutants is concerned. An intuitive explanation is as follows. A
higher-turnover cancer requires more cell divisions to reach size
N, and thus more mutants are created. At the same time,
however, the death rate of the mutants is also increased. The two
effects cancel each other out. Similar behavior was observed
numerically in ref. 15. The contribution of the treatment phase
can be ignored, and the occurrence of treatment failure is not
influenced by the efficacy of the drugs.

Evolution of Resistance Against Two or More Drugs
Now, consider treatment with two or more drugs. We observe an
important difference compared with the one-drug scenario
above: The probability that resistant mutants preexist now
depends on the natural death rate, D (i.e., the dynamics are
different for high- and low-turnover cancers; see Eq. 1). The
larger the number of drugs in use, the stronger this dependency
(Fig. 2). The key to understanding this lies in the process of
mutant generation. To explain this, assume that once produced,
a mutant does not die. In the context of one drug, the probability
that at least one resistant mutant has been produced in the
course of tumor growth up to size N is given by uN �
NLu�(L�D). This depends linearly on (L�D)�1 (Fig. 2), and is
canceled out by the factor (1�D�L) if mutant death is included.
For two drugs (requiring a double mutant), this probability is
roughly given by

2� Lu
L � D�

2

N log N .

The dependence on (L�D)�1 is now stronger than linear and is
not canceled out anymore if mutant death is included. In general,
if the number of drugs is increased, a higher natural death rate

Fig. 1. Mutation diagram corresponding to three drugs. Each node corre-
sponds to a phenotype. The binary number above each node identifies which
drugs the phenotype is resistant to, e.g., 011 means this type is resistant to
drugs 2 and 3 but not to drug 1. The leftmost type (000) is fully susceptible, and
the rightmost one (111) is resistant to all three drugs. The mutations rates are
marked above each arrow. The notation below the nodes identifies the
variable used to describe each phenotype; see supporting information for
details.

Fig. 2. Probability of producing resistant mutants before treatment, de-
pending on the death rate of tumor cells, D. To consider the pretreatment
phase only, we artificially set the mutation rate to zero upon start of therapy.
Further, to concentrate on the production of resistant mutants, we assume
that the mutants do not die. We plot the tumor size, N, at which the proba-
bility of treatment failure due to preexistence equals �. Note that all curves are
scaled to be displayed on one graph. For a single drug, this dependence is
linear. For a larger number of drugs, this dependence becomes increasingly
stronger than linear. Parameter values were chosen as follows: L � 1, u � 10�6,
� � 0.01.
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of tumor cells, D, contributes increasingly to the production of
resistant mutants and thus to treatment failure (Fig. 2). Another
difference compared with the one-drug scenario is that with
higher numbers of drugs, the treatment phase becomes com-
pletely insignificant. For instance, for n � 2 drugs and D � 0, we
have

P2
1� 1 � �1 � 2log Nu2	N � P2

2 � 1 � �1 � 2u2	N.

The reason lies in the dynamics of the intermediate mutants.
During the growth phase, a cell with a single mutation will
undergo clonal expansion, and this facilitates the generation of
further mutations. During the treatment phase, a cell with a
single mutation has a negative growth rate (because it is sus-
ceptible to one or more drugs), and this makes it unlikely that
additional mutations can be attained before the clone is extinct.

Summary of the Evolutionary Dynamics of Resistance
All of the above arguments (and calculations) can be summa-
rized as follows. For the case of one drug, the probability of
treatment failure for a given size is independent of whether the
cancer has a high- or a low-turnover rate. The contribution of the
pretreatment phase to the generation of resistance is greater
than that of the treatment phase as long as H � Hc. On the other
hand, for two or more drugs, we have:

Y Pretreatment phase always plays the dominant role in treat-
ment failure, and generation of resistance during treatment
can be ignored, Pn

1 �� Pn
2 for n � 1;

Y High-turnover cancers have a higher probability of treatment
failure (for the same size N) than low-turnover cancers;

Y Both of these effects become stronger for larger numbers of
drugs.

Prevention of Resistance
After examining the basic evolutionary dynamics of drug resis-
tance in cancer, we turn to a more applied question: How many
drugs should be used to prevent treatment failure depending on
the size of the tumor? We address the problem of treatment
failure in the following way. We ask at which tumor size N the
probability of treatment failure reaches a threshold value, which
we denote by �. This means that if we start treatment at tumor
size N, failure will be observed in a fraction � of the patients,
whereas treatment will be successful in a fraction 1 � � of
patients. For now, we assume that an acceptable goal is to treat
99% of patients successfully, that is � � 0.01. Table 1 shows the
tumor sizes at which resistance becomes a problem (i.e., �99%
of patients will be treated successfully), depending on the rate at

which resistance mutations are generated, u, and the number of
drugs, n.

Assume that a single drug is used to treat patients. The tumor
size when resistance arises is given by

log N � log� ��H � D � L	

H � � log u .

Resistance arises at lower tumor sizes for higher mutation rates,
u (Fig. 3a). Note that if H �� D, we have a very simple relation,
log n � log � � log u. That is, the results are not influenced by
the natural death rate, D. This is in accordance with our
theoretical reasoning above.

If the number of drugs is increased, we observe three impor-
tant differences:

1. An increase in the mutation rate, u, results in a more
pronounced decline of the tumor size when resistance is
observed. The larger the number of drugs, the more pro-
nounced this decline (Fig. 3a).

2. The treatment phase, and thus the treatment efficacy, H, has
no influence on the generation of resistance.

3. The size at which resistance arises now depends on the death
rate, D. Resistance arises at smaller tumor sizes if the death
rate of tumor cells, D, is higher (Fig. 3b). The larger the
number of drugs and the higher the mutation rate, u, the
stronger this dependency (Fig. 3b).

By how much does an increase in the number of drugs improve
the chances of treatment success? According to the arguments
above, this depends on the mutation rate, u, and the death rate
of tumor cells, D. (i) The higher the rate at which resistance
mutations are acquired, u, the less is the effect of adding another
drug, and the more difficult it becomes to treat (Fig. 3c).
Consider the most optimistic scenario where D � 0 (Table 1).
Assuming that cancers can reach up to sizes of 1013 cells (16), u �
10�9 requires two drugs, u � 10�7�10�8 requires three drugs,
u � 10�5�10�6 requires four drugs, and u � 10�4 requires six
drugs (Table 1). By extrapolation, 10 drugs are needed if u �
10�3, and �30 drugs if u � 10�2. Therefore, drugs to which
resistance can be generated with such high rates (e.g., because
genetic instability happens to promote the necessary mutations)
should not be developed. (ii) As pointed out above, resistance
arises at lower tumor sizes as the death rate, D, is increased. In
fact, if the death rate of tumor cells, D, comes close to their
division rate, L (high-turnover cancer), then the effect of com-
bining multiple drugs disappears (Fig. 3b). The size at which
resistance arises converges to the same value, no matter how
many drugs are used. In this case, the frequency with which

Table 1. The log10 size at which resistance becomes a problem (i.e., treatment failure in >1%
of patients), depending on the number of drugs and the rate at which resistant mutants are
generated, u

u

No. drugs

One Two Three Four Five Six

10�4

10�5

10�6

10�7

10�8

10�9

If we assume that the cancers cannot grow beyond 1013 cells without causing death, a treatment regime can
be considered acceptable if resistance becomes a problem only at sizes �1013 cells (i.e., log10 of the size �13). The
parameter regimes where this occurs and where treatment is expected to be successful are indicated by shading.
Calculations assume L � 1, D � 0.
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cancers arise is low, because they have a high chance to go extinct
spontaneously, but when they do arise, the chances of complete
tumor eradication are very slim. Because high-turnover cancers
are likely to grow relatively slowly, however, drug therapy could
still increase the lifespan of the patient significantly by reducing
the number of cells below a threshold rather than achieving a full
response. Regrowth of resistant cells to large sizes would take a
long time.

Application to CML
As a specific example, consider the treatment of CML (17),
which develops in three phases: (i) the chronic phase, charac-
terized by expansion of terminally differentiated cells; (ii) the
accelerated phase, associated with a higher fraction of undif-
ferentiated cells; and (iii) blast crisis, where undifferentiated
cancer cells undergo large expansion in the presence of genomic
instability. The initiation and further progression of CML are
driven by chromosome translocation, resulting in the BCR-ABL
fusion gene, which encodes a cytoplasmic protein with consti-
tutive tyrosine kinase activity (18). The drug imatinib mesylate
(Gleevec, formerly STI571; Novartis, Basel) is a small-molecule
inhibitor of the Bcr-Abl kinase and can achieve sustained
hematologic and cytogenetic responses in chronic phase disease.
Treatment of blast crisis, however, often fails because of drug
resistance (19). In accordance with our framework, it has been
reported that mutants might preexist the initiation of treatment
rather than being generated during the treatment phase (20, 21).
Data suggest that two main types of mutations confer resistance
to the cells (19, 20, 22): the amplification of BCR-ABL, or a
point mutation in the target protein. Genetic instability (23) is
likely to promote the occurrence of gene amplifications, which

have been measured to occur in cancer cells at a rate of 10�4 per
cell division (24). On the other hand, the point mutation rate is
�10�9 per base per cell division (25). However, the frequency of
gene amplifications is much less than that of point mutations
among patients (20). Part of the reason might be that BCR-ABL
amplifications are costly to the cells in the absence of treatment
(26). Including this assumption into the modeling framework,
however, shows that even if this fitness cost is very significant,
amplifications should still be observed more often than point
mutations (not shown). However, it is thought that the level of
resistance is a function of the number of extra copies of the
BCR-ABL gene. Therefore, if a significant degree of resistance
requires two or more amplification events (but only one point
mutation event), we expect that a resistant mutant is generated
faster by point mutation than by gene amplification, explaining
the observed frequencies.

Thus, for prevention of drug resistance, we assume that
resistant mutants are generated maximally with a point mutation
rate of u � 10�8�10�9. Experiments with susceptible CML cell
lines have shown viability measurements (in the absence of
treatment) of �90% (26). From this, we can roughly calculate
that the relative death rate of cancer cells is in the range of
D�L � 0.1�0.5. In this parameter region, we find that a
combination of three drugs should prevent resistance and ensure
successful therapy even for advanced cancers (Table 2). This
assumes that the size of advanced cancers is �1013 cells, which
derives from white blood cell count measurements that range
from 105 to 106 per microliter of blood in blast crisis. Recent
findings (27) indicate that BCR-ABL might increase the amount
of reactive oxygen species and thus the rate of point mutations.

Fig. 3. Log tumor size, N, at which treatment failure is observed, depending on the parameters of the model. (a) Dependence on the rate at which resistant
mutants are generated, u. The higher the value of u, the lower the tumor size at which treatment fails. The larger the number of drugs, the stronger this
dependency. (b) Dependence on the natural death rate of tumor cells, D. The higher the value of D (i.e., the higher the turnover of the cancer), the lower the
tumor size at which treatment fails. The higher the number of drugs and the rate at which resistant mutants are generated, u, the more pronounced this trend.
(c) Dependence on the number of drugs, n. Increasing the number of drugs increases the tumor size at which treatment fails. The higher the mutation rate,
however, the lower the advantage gained from adding further drugs. Baseline parameter values were chosen as follows: L � 1, � � 0.01.
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So long as the elevation of the mutation rate is �100-fold, our
results remain robust (Table 2).

Model Extension and Applicability
In addition to imatinib, possible candidates for additional drugs
to be used in combination in CML therapy have been discussed
in the literature (28), although the most promising ones show
some degree of crossresistance with imatinib (29). If this is the
case, our framework still applies, but the calculations would have
to be modified in the following way. Suppose drug X possesses
crossresistance with imatinib. This means that a part (or all) of
the mutants resistant to imatinib will also be (partially) resistant
to drug X. In the case where they are fully resistant to both drugs,
treating with the two drugs will not be more effective than
treating with just one of the drugs, and the clinical strategy will
have to be developed by using other important considerations
such as toxicity, etc. However, if resistance to drug X is partial,
then the resistant mutants will have a slower growth rate under
a two-drug therapy compared with that under a single-drug
therapy. In this case, we can calculate the advantage of a
two-drug therapy, for instance in terms of a reduction of the
tumor load. The occurrence of crossresistance is discussed in
refs. 30–32.

Another important issue is the heterogeneity of tumors. In
CML [as well as acute myeloid leukemia and several solid
tumors including breast and central nervous system tumors
(33–35)], there is evidence for the existence of cancer stem
cells, comprising a fraction of the total tumor burden. For
CML, the fraction of stem cells in blast crisis is �30%, and it
is much smaller in the chronic phase (33, 34). It has been
proposed that these cancer stem cells, which are the only tumor
cells that have potential for self renewal, may account for drug
resistance after initial response to therapy. This circumstance
can be taken into account by using the present framework.
Because resistance is mainly a problem in blast crisis and
usually does not arise in the chronic phase, we performed our
calculations for the latter phase of the disease. During this

phase, the blasts undergo a phase of rapid exponential growth,
and therefore the quantitative results of our present calcula-
tions apply. However, it would be an interesting extension to
consider heterogeneous populations of the chronic and accel-
erated phases of CML. There, stem cells constitute a smaller
fraction of the total population, and the predominant division
pattern is asymmetric, so one would have to make two
modifications in the model: (i) the total (effective) population
of dividing cells is smaller, and (ii) resistant mutants may
appear by two mechanisms: as a result of a mutation upon a
symmetric division of a stem cell and of an asymmetric
division. It can be checked that this will lead to a lower chance
of the generation of resistance compared with the blast crisis.

In the present calculations, we assumed that resistant mutants
behave in the same way as the wild-type tumor cells before
treatment starts. This may not be the case. If one can establish
that resistant mutants possess a fitness advantage in the absence
of treatment, this will definitely make the estimate of the
probability of resistance generation higher. Indeed, resistant
mutants will grow faster and reach higher numbers (and a larger
fraction of the total tumor load) before the treatment starts. On
the other hand, if resistant mutants are at a disadvantage before
the beginning of therapy, this would make generation of resis-
tance less likely. This information (as it becomes available) can
be very naturally incorporated in the model by including a
different growth rate (L) and death rate (D) of the mutants
compared with wild type.

The subject of drug resistance in cancer is very broad, and
many different scenarios are possible. For example, a targeted
drug may not be directly killing cancerous cells but instead, it can
selectively affect tumor-derived endothelial cells. This is the
basic principle of antiangiogenic therapies (36). There, a differ-
ent mechanism of resistance is possible, when hypoxia (which is
a consequence of the therapy) selects for vessel-independent
(and therefore resistant) cancer cells. In this case, it has been
noted (37) that stronger therapies will be more effective at
selecting for resistance and moreover, mutations conferring
resistance can also give rise to apoptosis-resistant and increas-
ingly malignant tumor cells. A mathematical treatment of this
case is possible and will be presented elsewhere.

The point of the CML calculations presented here is to
illustrate how the mathematical framework can be applied to
the targeted treatment of a specific cancer, based on experi-
mental observations. Although improved predictions will re-
quire that a higher degree of complexity is included in the
model, as discussed above, the basic framework presented here
can accommodate this easily. In addition, it will be interesting
to take into account the many new and controversial concepts
that are being discovered and discussed in the literature. The
strength of our framework is that it can be used to study many
complex scenarios. New information can be incorporated as it
becomes available from experiments and clinical trials.

Conclusion
This paper has provided an up-to-date mathematical framework
that helps us to understand the principles that underlie the
emergence of resistance in cancers treated with targeted drugs.
It suggests treatment schedules that maximize the chances of
successful therapy. Although the model correlated treatment
success with eradication of the cancer, results are unlikely to
change significantly if we assume that a certain small number of
cancer cells persist in a resting or dormant fashion. We have
shown how the framework can be applied to a specific cancer to
make predictions. CML is an obvious application, because blast
crisis corresponds to the clonal expansion processes described by
our model, and drug activity, as well as resistance mechanisms,
is well defined. The mathematical framework can be adapted to
take account of more complicated cancer growth patterns. We

Table 2. Application to the treatment of CML blast crisis
with imatinib

D�L

No. drugs

One Two Three Four Five

Assuming u � 10�8

0.1 5.95 12.34 18.45 24.38 30.19
0.5 5.95 12.13 17.99 23.69 29.26
0.9 5.95 11.48 16.70 21.74 26.66

Assuming u � 10�6

0.1 4.00 8.55 12.80 16.89 20.86
0.5 4.00 8.31 12.37 16.20 19.93
0.9 4.00 7.68 11.07 14.40 17.40

We give the log10 size at which resistance becomes a problem, depending
on the number of drugs and the turnover rate of the cancer cells (value of D�L).
From published data, we estimated that the value of D�L must lie between 0.1
and 0.5, and we also present calculations for D�L � 0.9. We consider treatment
robust if resistance arises only at tumor sizes �1013 cells (i.e., the value 13). In
this case, the combination of three drugs is expected to result in the preven-
tion of resistance and successful treatment. We consider two cases. First, we
assume that resistant mutants are generated with a rate of u � 10�8. The
reason for this parameter choice is as follows: while the point mutation rate
is around u � 10�9, several point mutations can lead to resistance and this
increases the rate. In the second calculation, we assume that resistant mutants
are generated with an elevated rate of u � 10�6, i.e. a 100-fold increase. This
represents the borderline where three drugs will no longer prevent resistance.
Thus, so long as the point mutation rate is elevated �100-fold by BCR-ABL,
triple drug therapy should prevent resistance.
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have shown how nonneutral resistant mutants, stem-cell�
differentiated cell hierarchy, and the effect of partial crossre-
sistance can be incorporated into the model, as the data become
available.

Of particular importance for the basic model is the measure-
ment of cellular turnover kinetics at different stages of the
disease. The rate of cell division, L, and of cell death, D, can be
calculated from DNA-labeling data, similar to studies performed

in the context of immunology (38). It will also be interesting to
explicitly take into account the kinetics of cancer decay during
treatment, to address further details, such as the occurrence of
primary resistance (no response after initial treatment) vs.
secondary resistance (relapse after an initial response).
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